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Meshless numerical simulation for fully nonlinear water waves
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SUMMARY

A meshless numerical model for nonlinear free surface water wave is presented in this paper. An
approach of handling the moving free surface boundary is proposed. Using the fundamental solution
of the Laplace equation as the radial basis functions and locating the source points outside the com-
putational domain, the problem is solved by collocation of only a few boundary points. Present model
is �rst applied to simulate the generation of periodic �nite-amplitude waves with high wave-steepness
and then is employed to simulate the modulation of monochromatic waves passing over a submerged
obstacle. Good agreements are observed as compared with experimental data and other numerical
models. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: meshless numerical method; nonlinear water waves; moving boundary; radial basis
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1. INTRODUCTION

In the past decades, extensive works have been carried out to simulate the propagation prob-
lems of surface gravity water waves. Among these works, perturbation techniques are usually
employed to simplify the moving and fully nonlinear free surface boundary conditions. After
perturbation work is undertaken, the di�culty of free surface boundary condition is circum-
vented by a �xed boundary which becomes weakly nonlinear in time domain [1–3] as well as
in frequency domain [4–7]. Perturbation approaches, always accompanying with complicated,
prolix and tedious equations and scheme formulations, might lose some degrees of accu-
racy and fail to treat the fully nonlinear wave problems well. Without simpli�cation through
perturbation procedure, solving the water wave problems directly will encounter the situation
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that the boundary at the moving free surface is fully nonlinear and not known a priori. For
traditional numerical methods (such as FEM or FDM for example), non-�xed (deforming)
meshes are needed [8, 9]. Usually, an excess number of nodes and a huge size of matrix
accompany with the formulation if one tries to solve the problem by conventional numerical
methods. Time-domain boundary element method (BEM) had been employed for its applicabil-
ity to the computation of steep water wave propagation since nonlinear free surface conditions
were fully incorporated [10–16]. By the mixed Eulerian–Lagrangian (MEL) approach, particle
trajectories and the nonlinear boundary conditions on the free surface can be predicted after
numerical integration in the time domain, then the velocity potential of linear boundary value
problem can be solved directly at the further time step. The MEL approach was explicated in
detail in the paper of Tsai and Yue [17]. Overturning waves can even be simulated by means
of MEL approach [10, 16]. As BEM is based on solving integral equations, integration along
the boundaries are always needed. Evaluating these integrals is a tedious task since there are
singularities on the boundaries, either �xed or moving. Furthermore, BEM produces huge and
dense matrices, which take much time in solving the linear algebraic system. Though the
dense matrices can be e�ciently compressed to sparse ones by some means of approximation
such as fast multipole method, panel clustering and wavelet compression [18–20], to speed
up the computations, the need of computing tedious singular integrals still remains in BEM
with some di�culties for implementing free surface water wave problems.
In recent years, a new numerical technique called ‘meshless methods’ (or ‘mesh-free meth-

ods’, or ‘mesh reduction methods’) has been exploited under strong developments. This
scheme has attracted great attention from science and technology communities. A common
feature of meshless methods is that neither domain nor surface meshing is required during
the solution process in solving boundary and initial value problems. Thus, they are suitable
to handle physical problems with large deformation, moving boundaries, and a complicated
geometry of the solution domain.
The basic idea of meshless method is the construction of radial basis functions (RBF)

which state the relationship between the two-point distances. The RBFs were �rst developed
for interpolating scattered data [21, 22], and later became a kind of arti�cial neural network
kernels [23]. The applications of the concepts of RBFs to solve PDEs have been introduced for
years [24]. This approach was also recently applied to modelling the shallow water equations
in the coastal engineering [25]. Generally speaking, there are two kinds of meshless methods:
the domain-type and the boundary-type methods. In the domain meshless method, such as
the Kansa’s method, any single RBF does not satisfy the governing equations, and there
must be a large number of collocation points in both the computational domain as well as
boundary to obtain a better solution. Thus, neither the number of nodes nor the size of
matrix is reduced too much, and the advantages of domain meshless approach are just for
easy programming and avoiding the chore of mesh generation. On the other hand, in the
boundary meshless method in some PDEs (such as Laplace, Helmholtz, etc. for example),
one can choose the fundamental solution of the linear operator to be the RBF [26], which
will automatically satisfy the governing equation except at the centre of RBF. If all the source
points (centres of RBF) are set outside the computational domain, there will be no singularity
in the computational domain at all and only a few collocation points on the boundary are
needed to solve the problems by the method of collocation. In other words, by using the
method called the method of fundamental solutions (MFS), the governing equation has been
satis�ed automatically and the remaining task is only to satisfy the boundary conditions. This
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MESHLESS NUMERICAL SIMULATION 221

method is also called MFS. As a consequence, the solution procedures are only limited to
collocating the boundary conditions and become very simple and also very easy to program
as well. Though MFS is based on the fundamental solution as well as BEM, non-needing
of numerical integration makes it more e�ective in both manpower and computer-operation
reduction.
The intention of this study is thus to use the MFS to deal with the simulations of two-

dimensional fully nonlinear water wave problems and to compare with experimental works
and other numerical models.

2. GOVERNING EQUATION AND BOUNDARY CONDITIONS

The problem of a free surface water wave propagating in a �ume can be considered as a
2-D hydrodynamic problem for the inviscid, irrotational and incompressible �uids with free
surface boundary. Thus, there exists a velocity potential satisfying the Laplace equation
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where �(x; t) is the free surface displacement. The above two equations are called the kinematic
and dynamic free surface boundary conditions (K.F.S.B.C and D.F.S.B.C), respectively.
At the bottom, the boundary condition is the no-�ux condition. That is,
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where h(x) is the water depth.
The boundary condition at the wave generator is
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where �(z; t) is the position of the wave paddle.
The boundary condition at the end of the �ume is treated as the radiation boundary condi-

tion, which means waves are always outgoing. It is shown as
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where C is the wave speed.
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Now that we have governing equation and boundary conditions, the problem is well posed
and can be solved numerically.

3. NUMERICAL IMPLEMENTATION

The numerical solution at each time step is assumed as the linear combination of N RBFs,
taking nth time step as example

�(n)(x; z)=
N∑
i=1
�(n)i qi(x; z) (7)

where qi(x; z) is the RBF whose centre (also named source point) is at (xi; zi), and �
(n)
i is its

weight. The type of RBF chosen in this study is the fundamental solution of a 2-D Laplace
operator. That is,

qi(x; z)= ln(ri) (8)

where ri=
√
(x − xi)2 + (z − zi)2 is the distance from any position in the computational

domain to that speci�c RBF centre. Thus, the solution form satis�es the governing equa-
tion automatically except at the RBF centres. If all the RBF centres are chosen out of the
computational domain, the solution can be obtained by solving �(n)i from the matrix collocated
from the boundary conditions only.
The free surface boundary conditions involving the time variable (Equations (2) and (3))

can be formulated by the second order �nite di�erence formulations
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The boundary condition at the free surface can be applied directly when solving � for the
(n+1)th time step. This approach is rather straightforward, without any iteration. Unlike the
MEL approach, this approach is more e�ective since no time-domain integrations are needed.
However, as we treat the free surface displacement as a function of the horizontal plane, the
overturning waves could not be simulated.
Based on the solution form in Equation (7), the partial derivatives of the velocity potential

are shown as (
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The boundary conditions at the wave paddle and bottom are then applied properly. Further-
more, the boundary condition at the end of the �ume can also be applied as
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At each time step, there are N unknowns (�(n)i ; i=1; : : : ; N ) to be solved. Thus, N boundary
points are needed for the method of collocation. Boundary points at the free surface are coded
from 1 to Ns, which is the count of surface boundary points. The gradient of free surface
displacement at any speci�c boundary point can be approximated by a second order �nite
di�erence scheme as
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The procedure of numerical implementation is shown in Figure 1 and is illustrated as
follows:

Initial Condition (n=0)

Update the positions of collocation points 
at the wave paddle for (n+1)th step

Calculate the surface displacement and the 
velocity potential at the free surface by 
eq.9 and eq.10.  Then update the positions 
of collocation points at the free surface.

Apply the boundary conditions to solve 
the velocity potential in the entire domain 
for (n+1)th step

Check time steps

Stop

Next time step (n=n+1)

Initial Condition (n=0)

Update the positions of collocation points 
at the wave paddle for (n+1)th step

Calculate the surface displacement and the 
velocity potential at the free surface by 
eq.9 and eq.10.  Then update the positions 
of collocation points at the free surface.

Apply the boundary conditions to solve 
the velocity potential in the entire domain 
for (n+1)th step

Check time steps

Stop

Next time step (n=n+1)

Figure 1. The �ow chart of numerical simulation.
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Step 1: The velocity potential in the entire domain � and the particle displacement at the
free surface � are all set to zero, initially (at n=−1 and n=0).
Step 2: The positions of collocation points at the wave paddle for (n+ 1)th time step are

updated.
Step 3: The free surface displacement and velocity potential at the free surface are calculated

by Equations (9) and (10). Then, the positions of collocation points at the free surface for
(n+ 1)th time step are updated.
Step 4: Calculating the partial derivatives of the RBFs at all collocation points, the boundary

conditions at the free surface, the bottom and two ends of the �ume are then applied. And
the solution of the velocity potential in the entire domain at (n+ 1)th time step can thus be
obtained.
Step 5: The number of time steps proceeded is checked. If the requirement of time steps

is not achieved, step 2 for the next time step is then processed.

4. MODEL APPLICATIONS

Present numerical model is applied to two types of wave motion problems. First, the �nite-
amplitude, high steep waves generated by a harmonically oscillating paddle of piston-type
wavemaker are simulated. The numerical solutions of periodic wave generation are compared
with those of linear (or small amplitude) wave theory and experimental data [27]. Then the
modulation of monochromatic waves passing over a submerged obstacle is simulated. The
numerical results of monochromatic waves passing over a submerged obstacle are compared
with experimental data [28] and two other numerical results [29, 30].

4.1. Periodic wave generation

The waves generated by a �nite-amplitude harmonically oscillating paddle of piston-type
wavemaker were observed and discussed by Ursell et al. [27]. The wave heights were less
than predicted by small-amplitude wave theory because of the �nite-amplitude e�ects. Ursell
et al. [27] carried out 20 runs for small-amplitude waves, and 4 runs for high steep waves.
The experimental works were to test the validation of small-amplitude wave theory and also
to �nd the �nite-amplitude e�ects on the wave characteristics. The wave conditions included
the wave period T , water depth h, wave height, H , and the wavemaker stroke S for high
wave-steepness, as listed in Table I. The length of our numerical wave �ume is 20 m. The
paddle position of the piston-type wavemaker in numerical model is a function of time as

�(t)=
S
2
sin!t (15)

Table I. List of Ursell et al.’s [27] �nite-amplitude wave generation conditions.

Run T (s) S (cm) h (ft) Hmeasured (cm)

21 0.79 2.54 2.00 4.77
22 0.85 3.15 1.50 5.25
23 0.95 4.50 1.00 5.47
24 0.96 5.73 0.66 5.14
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The arrangement of source points and boundary points is shown in Figure 2. Horizontal spac-
ing of adjacent boundary points along the free surface is 0:1 m (about 1=10–1=13 wave
length). There are 406 source points outside the computational domain. The interval of
numerical time step is in the order of 1=50 wave period. When simulation time achieves
several wave periods, quasi-steady solution near the wave paddle can be obtained (Figure 3),
and then the wave height at each speci�c position can be calculated by subtraction of the
lowest water level from the highest during the time interval of one wave period. In present
work, the wave heights are calculated from the free surface displacement during t=20T–21T .
The wave height distributions near the wave paddle are shown in Figure 4. One can �nd that
the evanescent waves are signi�cant near the wave paddle for short wave cases. Since the
actual position of wave gage was not mentioned by Ursell et al. [27], we calculate the average

Figure 2. The arrangement of source and boundary points.

�(
m

)

Figure 3. Free surface displacement nearby the wave paddle at t=10T , t=15T and t=20T for the
case of T =0:79 s, S =2:54 cm, h=2:00 ft.
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Figure 4. Wave height distributions near the wave paddle.

Figure 5. Comparison with the experimental data about the deviation from wavemaker
theory due to �nite wave steepness.

wave height in the range of x=1:0–3:0 m in order to compare with experimental data and
the small-amplitude wave theory. This distance is far enough to avoid taking the evanescent
waves into account in these cases. The comparisons are illustrated in Figure 5. For the case
of deep water wave (h=L¿0:5), the numerical result matches to the experimental data quite
well. While for the other cases, the wave heights generated by present model are slightly
higher than experimental data, but still much lower than predicted by the small-amplitude
wave theory. This demonstrates that the wave heights by the small-amplitude wave theory are
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in general overpredicted. The nonlinearity plays a vital role for the �nite-amplitude waves as
far as wave heights are concerned.

4.2. Monochromatic waves passing over a submerged obstacle

Luth et al. [28] carried out laboratory wave generation tests, including breaking and non-
breaking waves, in a physical wave �ume in order to analyse the evolution of the
frequency spectrum for waves travelling over a submerged structure. The layout of the phys-
ical wave �ume is shown in Figure 6. When the present numerical model was applied, the
downstream boundary was set up at 40 m to ensure that the e�ects from the downstream
boundary are minimized. The test case of wave height 2:0 cm and wave period 2:02 s is
chosen since the nonlinearity is the most dominant among non-breaking wave test runs. This
test case was also numerically simulated by Gobbi and Kirby [29] by using a fourth order
fully nonlinear Boussinesq-type equation model (named as FN4 in this paper) and by Li
and Fleming [30] with a 3-D model directly solving the Navier–Stokes equations (named
as DNS in this paper). Numerical simulations of free surface displacement at x=5:2, 12.5,
14.5 and 17:3 m were illustrated in the paper of Li and Fleming [30] while numerical re-
sults of free surface displacement at x=2:0; 4:0; 5:7; 10:5; 12:5; 13:5; 14:5; 15:7; 17:3; 19:0; 21:0
and 23:0 m were obtained in the paper of Gobbi and Kirby [29]. The available experimental
data of Luth et al. [28] were measured at x=2:0; 4:0; 5:7 (actually at 5:2m but stated at 5:7m),
10:5; 12:5; 13:5; 14:5; 15:7; 17:3; 19:0; 21:0 and 23:0 m. We try to compare all the experimental
data as well as those two numerical results as much as possible in order to test the feasibility
of present meshless numerical model.
Since Luth et al. [28] generated waves by a hinge-type wavemaker, the boundary condition

at the wave paddle is di�erent from that in Equation (15). The horizontal velocity at the left
boundary is no longer vertically uniform. Therefore, we have to modify Equation (15) by
specifying the position of the wave paddle in the following form:

�(z; t)=
S(z + h)
2h

sin!t (16)

Horizontal spacing of adjacent boundary points along the free surface has been tested and
0:1m is found to be su�cient, as shown in Figure 7, though 0:05m was suggested by Li and
Fleming [30]. There are 806 source points outside the computational domain. The time step
taken is 0:025 s.

Figure 6. Sketch of wave �ume of Delft experiments [28].
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Figure 7. Results of di�erent horizontal spacing of adjacent boundary points along the free surface.
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Figure 8. Comparison of computational free surface displacement with experimental data at x=2:0 m.

Data for comparison were digitized from the paper of Gobbi and Kirby [29] and
also the work of Li and Fleming [30]. The numerical results of free surface displacements for
x=2:0; 4:0; 5:2; 5:7; 10:5; 12:5; 13:5; 14:5; 15:7; 17:3; 19:0 and 21:0 m are illustrated in
Figures 8–19, respectively. Figures 8 and 9 depict the comparisons of free surface displace-
ments of experimental data with the present and Gobbi and Kirby [29] at x = 2:0 and 4:0 m,
respectively. The three results are all very close to one another. The comparison of free surface
displacements between the present solution with Li and Fleming [30] at x=5:2m is illustrated
in Figure 10, in which one can observe that there is a little out of the phase between these
two results. Numerical results of free surface displacement at x=5:7 m for both the present
and Gobbi and Kirby [29] also reveal some degree out of the phase as compared with exper-
imental data, as shown in Figure 11. It was explained by Gobbi and Kirby [29] that the gage
was actually located at x=5:2m while it was stated at x=5:7m in the provided information
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Figure 9. Comparison of computational free surface displacement with experimental data at x=4:0 m.
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Figure 10. Comparison of computational free surface displacement with experimental data at x=5:2m.
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Figure 11. Comparison of computational free surface displacement with experimental data at x=5:7m.
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Figure 12. Comparison of computational free surface displacement with experimental data at x=10:5m.
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Figure 13. Comparison of computational free surface displacement with experimental data at x=12:5m.

of Luth et al. [28]. There was no mention if Li and Fleming [30] altered the position from
x=5:7 m to x=5:2 m. We preferred not to alter the original information and leave this as a
note at this moment. Numerical solutions at the gages upstream from the obstacle excellently
match the physical model results except at x=5:7 m, as depicted in Figures 8, 9 and 11.
For the gages behind and over the obstacle, such as from x=10:5, 12.5, 13.5, 14.5, 15.7,
17.3, 19.0 to 21:0 m, the comparisons of the numerical model solutions for the free surface
displacements with the experimental data show that present model can be successfully used
for nonlinear wave propagation and deformation, as well as the other two complex numerical
models, as illustrating from Figures 12–19. However, much simpler e�orts are re�ected from
the implementation of present meshless numerical approach.
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Figure 14. Comparison of computational free surface displacement with experimental data at x=13:5m.
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Figure 15. Comparison of computational free surface displacement with experimental data at x=14:5m.
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Figure 16. Comparison of computational free surface displacement with experimental data at x=15:7m:
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Figure 17. Comparison of computational free surface displacement with experimental data at x=17:3m.
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Figure 18. Comparison of computational free surface displacement with experimental data at x=19:0m.
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Figure 19. Comparison of computational free surface displacement with experimental data at x=21:0m.
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5. CONCLUSIONS

This boundary-type meshless method requiring neither domain nor surface meshing is suitable
for solving problems with deforming and=or moving boundaries. In free surface water wave
problems, one can choose fundamental solution of the Laplace operator to be the form of the
radial basis function so that only a few collocation points along the boundary are needed.
The present numerical model, with neither prolix scheme formulation nor tediously iterating
procedures, has provided an e�ective tool for simulating fully nonlinear free surface gravity
water wave problems. In periodic wave generation simulation, this numerical wavemaker has
successfully produced the periodic �nite-amplitude waves with high wave-steepness, which
characterizes the fully nonlinear water waves. We have compared the nonlinear wave prop-
agation problem of monochromatic waves passing over a submerged obstacle through the
formulations of direct numerical simulation of Navier–Stokes equations, the fourth order
Boussinesq equation, and the Laplace equation. All the three models reveal di�erent com-
parable modelling capabilities as compared with the experimental data. However, our model
is the easier model among them to describe the salient features of the fully nonlinear water
waves.
Though the present method also produces full and dense matrices which could take much

time in solving the linear algebraic system, the computational speed is expected to acceler-
ate once the e�ective matrices compressors, similar to the developments for BEM [18–20],
were developed. Compared with the analogous BEM works [10–16], the present method with
no need of singular surface integrations is easier to implement. Furthermore, the proposed
approach for time marching is rather straightforward without any iterating procedures. Com-
pared to the MEL approach, which needs numerical integration in time domain, computational
time can be economized. However, since we treat the free surface displacement as a function
of the horizontal plane, the overturning waves could not be simulated.
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